8th Grade Math	Copy of Standard	Anticipated Assessment
Expressions and Equations	8.EE.2. Use square root and cube root symbols to represent solutions to equations of the form x2=p and x3=p, where p is a positive rational number. Evaluate square roots of small perfect squares and cube roots of small perfect cubes. Know that $\sqrt{2}$ is irrational.	EdPuzzle questions, textbook practice, email questions, quizzes, and/or test
	8.EE.8. Analyze and solve pairs of simultaneous linear equations.	
Geometry	8.G.7. Apply the Pythagorean Theorem to determine unknown side lengths in right triangles in real-world and mathematical problems in two and three dimensions.	EdPuzzle questions, textbook practice, email questions, quizzes, and/or test
The Number System	8.NS.1. Know that numbers that are not rational are called irrational. Understand informally that every number has a decimal expansion; for rational numbers show that the decimal expansion repeats eventually, and convert a decimal expansion which repeats eventually into a rational number	EdPuzzle questions, textbook practice, email questions, quizzes, and/or test
	8.NS.2. Use rational approximations of irrational numbers to compare the size of irrational numbers, locate them approximately on a number line diagram, and estimate the value of expressions	